Nieuw perspectief voor ontwikkeling van respiratoir syncitieel virus (RSV) vaccine

New perspectives for development of an RSV vaccine
Respiratory Syncytial Virus causes severe respiratory tract infections and worldwide claims the lives of 160,000 children each year. Scientists at VIB and Ghent University have succeeded in developing a promising vaccination strategy to counteract this common virus infection.

Xavier Saelens (VIB/UGent): “We discovered a new vaccination strategy that paves the way for the development of a novel approach to vaccination against RSV, a virus that causes suffering in numerous small children and elderly people.”

virusRSV: an infection that is difficult to combat
The Respiratory Syncytial Virus – abbreviated to RSV – is the most important cause globally of viral respiratory tract infections in young children. Children with a high risk of complications caused by RSV are sometimes treated preventively to avoid the infection, but this treatment is expensive and does not work therapeutically. Children with RSV infections are often hospitalized and primarily receive supportive care. There is no medicine available yet that can effectively suppress an RSV infection. RSV infections are also common in the elderly and they can become severely ill as a result.

Searching for a RSV vaccine: prevention is better than cure
Previous attempts to develop a vaccine against RSV have failed miserably. A vaccine must prime our immune system so that it can protect us against a pathogen. The starting point in the development of a vaccine is usually the proteins that are present on the outside of the virus. Many scientists and pharmaceutical companies are targeting the two large envelope proteins – F and G – in the development of a RSV vaccine, but these approaches are  have yet to prove clinical benefit against disease caused by RSV.


Bert Schepens, Xavier Saelens and Walter Fiers (VIB/UGent) searched for an alternative strategy to attack the virus. They focused on a small, seemingly insignificant envelope protein of RSV, the so-called Small Hydrophobic protein (SHe). The immune system barely notices this viral protein during an infection with RSV.  Therefore, the scientists linked the extracellular part of SH to another molecule. The resulting SHe conjugate did induce antibody production in laboratory animals.

New vaccine offers protection in lab animals
The SHe-specific antibodies do not  neutralize  RS virus in vitro. However, mice that were vaccinated with the SHe vaccine were protected against a challenge with the virus. The growth of RSV in the lung tissue of the vaccinated animals was significantly reduced and the animals did not become ill. The experiments were repeated in cotton rats as these animals are naturally more sensitive to RSV infections. The positive results were confirmed: pretreatment with the SHe-vaccine suppressed the replication of RSV in the lung tissue of the infected cotton rats.

Surprising mechanism of action
As no neutralizing antibodies were induced, the vaccine must offer protection via a different mechanism. The scientists also unraveled this mechanism. The SHe-specific antibodies stimulate macrophages (cells that absorb foreign particles) in the respiratory tract to such an extent that they selectively ingest (phagocytose) the virus-infected cells

Bert Schepens (VIB/UGent): This alternative approach to battle RSV has never been studied before and this is exactly the pathway that is triggered by the new candidate vaccine. The SHe-based vaccine could be linked to other candidate vaccines directed against the larger envelope proteins of the virus, to double hit the virus: with neutralizing antibodies in addition to antibodies that stimulate macrophages to selectively eliminate infected cells”.

As this research may raise questions, we want to ask you to list the e-mail address that the VIB has made available for questions in your report or article. Everyone can contact us with questions about this research and other medical research: [email protected].

Protection and mechanism of action of a novel human Respiratory Syncytial Virus vaccine candidate based on the extracellular domain of Small Hydrophobic protein. Bert Schepens, Koen Sedeyn, Liesbeth Vande Ginste, Sarah De Baets, Michael Schotsaert, Kenny Roose, Lieselot Houspie, Marc Van Ranst, Brian Gilbert, Nico van Rooijen, Walter Fiers, Pedro Piedra, Xavier Saelens. EMBO Molecular Medicine?

Note to the editorCredits
When reporting on this research, please mention all partners involved.

VIB is a non-profit research institute in life sciences. About 1,300 scientists conduct strategic basic research on the molecular mechanisms that are responsible for the functioning of the human body, plants, and microorganisms. Through a close partnership with four Flemish universities ? UGent, KU Leuven, University of Antwerp, and Vrije Universiteit Brussel ? and a solid funding program, VIB unites the forces of 83 research groups in a single institute. The goal of the research is to extend the boundaries of our knowledge of life. Through its technology transfer activities, VIB translates research results into products for the benefit of consumers and patients and contributes to new economic activity. VIB develops and disseminates a wide range of scientifically substantiated information about all aspects of biotechnology. More information:

Ghent University
After more than twenty years of uninterrupted growth, Ghent University is now one of the most important institutions of higher education and research in the Low Countries. Ghent University yearly attracts over 35,000 students, with a foreign student population of over 2,200 EU and non-EU citizens. Ghent University offers a broad range of study programs in all academic and scientific fields. With a view to cooperation in research and community service, numerous research groups, centers and institutes have been founded over the years. For more information

Redactie Medicalfacts/ Janine Budding

Ik heb mij gespecialiseerd in interactief nieuws voor zorgverleners, zodat zorgverleners elke dag weer op de hoogte zijn van het nieuws wat voor hen relevant kan zijn. Zowel lekennieuws als nieuws specifiek voor zorgverleners en voorschrijvers. Social Media, Womens Health, Patient advocacy, patient empowerment, personalized medicine & Zorg 2.0 en het sociaal domein zijn voor mij speerpunten om extra aandacht aan te besteden.

Ik studeerde fysiotherapie en Health Care bedrijfskunde. Daarnaast ben ik geregistreerd Onafhankelijk cliëntondersteuner en mantelzorgmakelaar. Ik heb veel ervaring in diverse functies in de zorg, het sociaal domein en medische-, farmaceutische industrie, nationaal en internationaal. En heb brede medische kennis van de meeste specialismen in de zorg. En van de zorgwetten waaruit de zorg wordt geregeld en gefinancierd. Ik ga jaarlijks naar de meeste toonaangevende medisch congressen in Europa en Amerika om mijn kennis up-to-date te houden en bij te blijven op de laatste ontwikkelingen en innovaties. Momenteel ben doe ik een Master toegepaste psychologie.

De berichten van mij op deze weblog vormen geen afspiegeling van strategie, beleid of richting van een werkgever noch zijn het werkzaamheden van of voor een opdrachtgever of werkgever.

Recente artikelen