Computermodel ondersteunt bij onderzoek naar kanker

Meerlaagse modellen van complexe relaties worden steeds belangrijker in biomedisch onderzoek. De hoge complexiteit maakt het gebruik van computers noodzakelijk bij het analyseren van deze relaties. Omdat er meestal geen duidelijke hypotheses over de verwachte relaties bestaan, zijn traditionele biostatistische methodes ongeschikt.

In haar proefschrift introduceert Dietlind Zuehlke een framework dat de groepering van meerlaagse objecten optimaliseert. Met behulp daarvan kunnen de objecten volgens gegeven classificaties worden gegroepeerd.

Tijdens het promotieonderzoek werd het framework toegepast op borstkankeronderzoek. Daaruit werd duidelijk dat het kan dienen als cognitief ondersteuningssysteem voor biomedisch onderzoek. Het bleek mogelijk om op intuitieve manier met de modellen om te gaan. Het ondersteuningssysteem maakt het mogelijk om hypotheses te genereren over biomedische relaties, die vervolgens gecontroleerd kunnen worden met traditionele biostatistische methoden.

Promotie: mw. W.D. Zuehlke, 11.00 uur, Academiegebouw, Broerstraat 5, Groningen
Proefschrift: Vector quantization based learning algorithms for mixed data types and their application in cognitive support systems for biomedical research
Promotor(s): prof.dr. M. Biehl, prof.dr. T. Villmann
Faculteit: Wiskunde en Natuurwetenschappen
Computermodel ondersteunt bij onderzoek naar kanker

Dietlind Zuehlke (Duitsland, 1983) studeerde informatica in Bonn. Het onderzoek werd uitgevoerd bij het Fraunhofer FIT (Sankt Augustin) en de vakgroep Machine Learning van de RUG. Het werd gefinancierd door het project Exprimage. Zuehlke werkt bij Fraunhofer FIT.